
L et’s start our whirlwind tour of software
ethics with a perceptive anonymous
critic.

What I see, as a non-programmer, is the total
lack of accountability of the software industry
towards society. But as software becomes vital
to many aspects of our lives, this situation
seems to become more and more untenable.

I read that on the web. It is part of an
intelligent online discussion following a
thoughtful interview called ‘The Problem
with Programming’, published by the MIT
Technology Review last November. What I
thought was a fair, well-stated criticism of
modern software was posted on a website in
Boston and thus relied on a whole lot of
programming – good or bad – to become
known to me in London. Such are the daily
ironies of the modern, techno-savvy life.

We’ve always said that the phrase ‘ethics
of software’ is really shorthand for any of
the myriad ethical issues raised by hardware
and software, computers and
communications. So let’s hear a rather
stunning counterpoint from out-and-out
hardware man, Henning Sirringhaus,
Hitachi Professor of Electron Device Physics
at Cambridge, as recorded by Electronics
Weekly in May 2005:

It is obvious in conversation that the work,
with its potential to affect people through
products such as electronic paper, satisfies
Sirringhaus for similar reasons to those for
which renewable energy once appealed.
‘There aren’t many fields where you take basic
research and very quickly have the chance to
affect people’s lives,’ he admits.

Not that the two are entirely inconsistent,
of course. This computing stuff, whatever it
is made from or into, affects people’s lives
enormously. If it didn’t, Professor
Sirringhaus’s start-up company, Plastic
Logic, would not have been
breezily announcing new
funding of $100 million this
January. It’s a significant moment
for the reflective nerd: the first
real stirrings of devices and
displays with logic no longer
built on silicon (or its close sister,
gallium) but on plastic –
‘semiconducting polymer
materials’ to their friends. That’s
our first real change in hardware
foundations since vacuum tubes
were replaced by silicon-based
transistors in the 1950s. If it
comes off. At least $100 million – a lot
more, if you take into account would-
be rivals of the Cambridge hopefuls –
is being bet that such an unforeseen
thing will come to pass. And, who
knows, you may have read it here first.
Or at least realised a little bit more how
historic it is!

Even before starting on our main
theme I wanted to emphasise the

complexity and ambiguities of our subject
by throwing into sharp contrast:

• partially understood past, radically
unpredictable future

• frustrations of software, excitements of
hardware

• sceptic or victim, idealist or perpetrator
• cynical American, courageous Brit
The last is a joke. I have no idea where the

first poster came from, and I admire his
point. But I did want to get in just one
mention of a plausible inventor of the
future based in the UK, even if the name
Sirringhaus suggests other roots than the
gentle Fens. We have to admit that not
many Brits are in such a position these days,
despite our world leadership in wiring those
vacuum tubes together in the 1940s,
helping the secret code-breakers at Bletchley
Park make such a signal contribution – sorry
– to victory over fascism. All under unsung
hardware genius Tommy Flowers, based on
the brilliant, creative mathematics –
software, if you will – of Alan Turing.

It’s an amazing story of a mere 65 years,
developments of profound beauty begetting
tumultuous social change, all in a time
period that’s a mere pinprick by world
history standards. All of which I now aim to
cut through with this charmingly deceptive
question: Who are the three wise men of
software?

Before putting my own fingers to
keyboard and mouse I asked three close
friends in London what their answers might
be. My local experts should have keen

insights on the subject, I felt, from quite
different perspectives. One has made a
significant amount of money through
software but has never written programs.
The other two have, like me, been
programmers for much of their working
lives, the younger now playing an active
role leading one of the most respected agile
development groups in the UK, of over 20
people. (Remember that hopeful-sounding
adjective. It’s going to appear a lot more
before our ethical explorations are finished.)

The punchline, of course, is that adding
the ten people nominated by my advisers –
one insisting on both founders of Google as
a single choice – to three of my own, we had
not one in common. Mind you, my oldest
collaborator had the temerity to choose
himself. When asked if he could, just once,
be serious, he deferred, independently, to
one of mine, Tom Gilb. All three of my
temporary mentors then grunted
approvingly as I mentioned Alan Kay. Oh
yes, they should have thought of him. But
at least two made a face – quite a feat on a
phone without webcam – when I declared
that my last selection was Richard Stallman.

As the wags would say, you could tell we
were experts because we disagreed so much
with each other.

But I’m happy. First, because I seem to
have invented an excellent new parlour
game for anyone with the slightest interest in
the future of software. And second, because
my three choices were not just straight from
the heart, they clearly provide rich seams of

software ethics,
controversy and paradox
to mine for the rest of the
article.

So who are these wise
men, so unsung that they
made hardly a ripple in
the mainstream media for
30 years and – not
unrelated – collected
vastly less loot than those
clever chaps from Google
in the last ten? Men whose
ideas have shaped us but, I

claim, we need to listen to
much more, if we are to avoid

the worst of technosocial
dystopias in the future. Cutting out
the long words, what tags can
possibly be attached to such old
names to cut any ice in the
innovative, young, cool, brash,
transient social networks that
make up Web 2.0? Well:

technology

THE UNSUNG HEROES
OF SOFTWARE By Richard Drake

SUBLIME | 97

p97to128_sublime_march07FINAL 6/3/07 12:52 pm Page 97

• Richard Stallman began open source
• Tom Gilb pioneered agile development
• Alan Kay invented … well, it is difficult

in Alan’s case, for his contributions have
been both deep and wide. But the phrase
I’m going to use in the rest of the article
is constant fun

So the future of software in my opinion
should look like this: open-source, agile and
constant fun.

Interestingly, in saying so, all three men
have now been tagged with terms that others
invented.

What Richard Stallman originally
proposed, in 1986, and has always been his
preferred name, is free software. With the sad
but inevitable rider: free as in speech, not
beer. Stallman urges all software, used by
anybody, to be provided, without exception,
with full source code – the painstaking
descriptions that programmers type to
produce it and that others need to enhance
and fix it. His case has always been about
ethics, justice and the well-being of society.
Many people, not least those with a strong
vested commercial interest, will still say that
he is an extremist who goes too far. But
without him the open-source movement
would not be the way it is today,
transforming much of the software
landscape. Stallman is its founding father
and it’s right to pay him respect for that, in
my view, and to learn as much as possible
from his arguments, as well as those of good
faith who respectfully beg to differ. More of
that anon.

Tom Gilb is a personal friend, with homes
in London and his native Norway. He too
spent a long time in the wilderness from the
1970s onwards, sent out to chew on the
technology world’s equivalent of wild honey
and locusts for the temerity of saying things
that were not only different to everyone else
but often exactly opposite to them. But Tom
was right. And his core thesis was profoundly
simple. Though there is more to the ideas
and practices by now, a large part of the agile
methods movement that has emerged so
strongly in the last eight years, both
independent of and influenced by Tom, boils
down to two old phrases of his: small steps
and juicy bits first. That’s the way all systems
should be built and, wherever possible,
delivered to their users. As Tom and more
recently Craig Larman have shown, it’s the
only way that has ever worked, in the whole
history of our industry. The government of
the UK, among others, needs to know about
that. Very badly. So do many other
institutions and corporations. That’s a key
ethical issue of our time. Again, some major
vested commercial interests come into play
when the radical nature of the required
change becomes clear.

Alan Kay is a true genius. One of his many
memorable goals for software is that ‘simple
things should be simple, complex things

should be possible’. In order to achieve this
for all computer users, but especially for
children, Alan and the brilliant research team
he built at Xerox in the 1970s ended up
inventing many things. All very consistent
with another famous motto: ‘The best way to
predict the future is to invent it.’ The nearest
thing we have to Kay’s own web page today
starts by saying that he was ‘one of the
earliest pioneers of object-oriented
programming, personal computing and
graphical user interfaces’. Not the pioneer,
because one of the man’s greatest strengths
has been to pay generous tribute to those that
came before and alongside. But there’s no
question in my mind, and in many others,
that Kay’s passionate vision of the uniformity
of both user and programmer experience
needed to achieve his goals was, in the 1970s,
both startlingly prescient and unique in its
profound understanding of humanity. The
best way I can find to describe the kind of
system Alan believes in, for the layman, is, as
I’ve mentioned, constant fun. The only
unexpected things that should happen with
software should be positive, in other words.
There should be a consistency, a constancy
about everything we do and interact with
that encourages fun and thus enables the full
range of human creativity. As you may have
noticed, it isn’t always that way.

When Xerox didn’t know what to do with
the richness they had funded, some of Kay’s
ideas were picked up in the 1980s by a
talented and ambitious entrepreneur called
Steve Jobs, co-founder of Apple Computer.
Not all, not by any means. That’s where the
frustration meets the excitement for those of
us who have followed such matters for the
best part of three decades. But it sure seemed
appropriate to hear Jobs pay tribute to Kay
during his recent, widely praised
introduction of the Apple iPhone at
MacExpo:

One of the pioneers of our industry, Alan Kay,
has had a lot of great quotes throughout the
years and I ran across one of them recently
that explains … why we go about doing things
the way we do. Because we love software.
Here’s the quote: ‘People who are really serious
about software should make their own
hardware.’ [Applause] Alan said this thirty
years ago and this is how we feel about it.

There have been some dire compromises,
even at Apple, in implementing Kay’s vision.
But, as we aim to review in future, the sparks
from an honest attempt to follow his

insights, and highly synergistic ones from
the other two thinkers, have gone on to
light fires leading to some of the most
important software breakthroughs of the last
two decades:

• Tim Berners-Lee and the world
wide web

• Ward Cunningham and the Wiki idea,
leading to Wikipedia

• Matz and DHH’s open-source work
leading to Ruby on Rails

OK, that last one probably isn’t going to
make much sense right now. (Just savour the
inspiring alliteration of the outcome, for the
moment.) In any case, how come I’m writing
as if the computing, mobile phone and
popular electronics industries still haven’t
properly learned things first propounded by
my wise men two and three decades ago?
Surely we can all see that technology has
come on leaps and bounds since then?

Well, yes and no. The hardware has,
remarkably so. Intel’s Gordon Moore, surely
one of the wise men of hardware, famously
predicted such a wondrous, continuous
process of miniaturisation and increase in
power, based on the known properties of
silicon, way back in 1965. At that point
nobody knew for sure about the feasibility of
many complementary developments, such as
fibre optics for high-speed communications,
wireless networking, the many new options
for fast – or vast – digital storage, or tiny
liquid-crystal displays leading to today’s
stunning flat panel screens. Let alone plastic
semiconductors and the nifty fold-up screens
they may soon make possible. But what of
the software driving all this amazing,
entrepreneur-driven gadgetry? Bogged down
in some very old ruts, in many places. Except
for the green shoots of hope we’ve begun to
identify.

Don’t believe me? Here’s how my first
quoted critic, in November 2006, went on:

My super high-tech cell phone crashes fairly
often, and it takes two minutes to reboot.
Sometimes I wonder, what if this ever happens
in an emergency situation? In an emergency,
two minutes is an eternity, and it can easily
mean the difference between life and death.
The list of our everyday software dependence
could go on and on …

Let’s hope the beautiful-looking Apple
iPhone does better than that. For old times’
sake, as well as to save some high-tech, 21st-
century lives. If others follow suit we may
have more time to think about the ethics and
global relationships engendered by our
strange but wonderful world of new
technology.

Richard Drake has been a software developer
since 1980. Today he consults in software
strategy and web development. He welcomes
feedback at richard@sublimemagazine.com

I SEEM TO HAVE
INVENTED AN EXCELLENT

NEW PARLOUR GAME
FOR ANYONE WITH THE

SLIGHTEST INTEREST IN THE
FUTURE OF SOFTWARE

98 | SUBLIME

p97to128_sublime_march07FINAL 6/3/07 12:52 pm Page 98

