
I wouldn’t say Tom Gilb is a vain man. But
in 1994 I had a feeling that the respected
international consultant might be tickled

by something in the newly-released book
from Microsoft, Code Complete. The next
time Gilb popped over to Objective, the
company I co-founded that he had
influenced so greatly, I had my chance. I
knew I’d struck exactly the chord I wanted –
and that Tom had fewer issues with his
dignity than many lesser men – when his
first reaction was to ask where the
photocopier was.

Tom has stood for a truly simple approach
to software development longer than
anyone else. His thoughts on the subject
since the 70s have recently been subsumed
into a trendier bandwagon called a g i l e
methods. But the important truths stand.
Keep development simple. Build systems in
the smallest possible steps, allowing
customers to use, or failing that to see, each
step in turn. So they can tell you what you
are getting right and, more importantly,
wrong. (And, indeed, tell you things that
they had no idea could be better, till they
saw what exists now. That’s how it always
works.)

The resultant feedback has never failed to
be a tremendous eye-opener, since I first
came across Tom’s ideas in 1986. Every step.
Of every system. For companies as diverse as
Reuters and Rio Tinto, on everything from
hi-tech simulation for defence to more
humble, yet lucrative, linear forecasting for
hedge funds. As you might assume, one
learns most from the early steps. But once
your customers know that this approach to
development is possible, they never want to
go back. To the old way, what someone once
dubbed the waterfall model. Though, with
massive irony for our whole industry, the
original paper that gave us the much-cited
waterfall diagram only did so, as Craig
Larman delights to tell, in order to say:
Never Do It Like This! 

What is waterfall? You’ve come across
the main idea in the news, every time
a government computer project
goes another hundred million
pounds over budget or fails to
deliver anything useful. Some
expert is interviewed about the
disaster and the answer always given is:
the stupid people involved should have
written a specification of what the system
should do, in every detail, agreed with all
stakeholders, then accurately priced with the

developers, before they started.
Nonsense, say Gilb, Larman and fifty

years’ hard experience with software. That
kind of thinking is what caused the problem
in the first place. Keep it simple, especially if
you are that stupid. Agree the smallest step
that will make a positive difference. Do that.
And see how you go.

I t ’s barely possible to understate how
much taxpayer money would have been
saved, in producing systems vastly superior
to the white elephants littering the scene
today, if the agile rubric had been employed
for government. Vastly superior for users, for
the often disadvantaged people they exist to
serve, and for the elected officials whose
careers are so often on the line when the
waterfall chickens come home to roost.

But ah, would directors of consultancies
who take on such massively profitable trips
into fantasy land for government be quite so
happy with such a radical change? Or senior
civil servants who seem to shuffle across to
the boards of such companies with
consummate ease, whose bulge of budget is
all too often seen as the measure of the
importance of the man? Such small-minded
motives have, I’m sure, nothing to do with
the fact that the incremental approach has
been spurned for years by fat cats on both
sides of large development contracts. But not
by ordinary software engineers. Many of us
have known the truth for years. And, like
any professional, it hurts to be forced to do
work that is so utterly second-best.

The little Seattle-based software outfit
called Microsoft is not, meanwhile, so
stupid. Despite its products not always being
as simple as they ought to be, developing
more commercial software than anyone else
on the planet, as they were doing by the 90s,
tends to concentrate the mind. Around that
time the men and women under the beady
eye of Gates took a close look at where they
were going wrong and took advice from
people that seemed to have answers. Then
Steve McConnell, by that time an outside
consultant, wrote the first account of what
they felt they had learned: Code Complete
was published by Microsoft Press in 1993.

The index that my old friend took such
delight in showed, under G, that in the
much-awaited text Bill Gates was cited two
times, Tom Gilb ten. Tom had waited around
fifteen years for that kind of recognition. He
has more of it today. But old habits,
especially in government, die hard.

What is it about simplicity we find so
difficult?

It depends who the ‘we’ is. Software geeks,
especially young and badly taught ones,
tend to overdesign systems and overestimate
their abilities. Elites, especially old and
craftily taught ones, have a vested interest in

keeping things more complicated than
necessary, lest the unwashed masses

find out what they are missing. But
things they are a-changin’.

Technology itself, from cheap
mobile phones to the internet, is

seeing to that.
In The Mystery of Capital Hernando

de Soto urgently shows how unnecessary
complexity blights the lives of billions who
live in shanty towns across the developing
world. Contrary to rumour, the vast majority

technology 

KEEP IT SIMPLE, STUPID
By Richard Drake

APPLE’S RECENT
RENOWN FOR BEAUTIFUL
SIMPLICITY, NOT LEAST BY

MUSIC FANS ACROSS
THE WORLD, ALTHOUGH

SURPRISING TO THE
MANY PUNDITS WHO

WROTE THE COMPANY
OFF IN THE 90S, IS

HARDLY AN ACCIDENT



100 | S U B L I M E

of such people want to join the official
economy. And they have amassed trillions
of dollars of assets, mostly through honest
hard work. (Gangsters will always be with us
but remain a minority.) If such people,
perhaps five-sixths of mankind, were able to
register such possessions and trade off them,
raising loans, starting businesses and the
like, their prospects would soar. As would
that of the countries in which they suffer
such squalor, too often dependent on
western handouts that prevent such
fundamental issues being addressed.

Where does the problem lie, according to
the brilliant Peruvian? The complexity of
rules governing entry to the official
economy. And the culprits (beyond rich
elites that tend to corrupt governments of
all kinds)? Lawyers and software suppliers.
The lawyers make far too much money from
the complex rules for registering property or
starting a business to have any motive to
simplify. And I was hardly surprised to learn
from de Soto how geographic information
systems had, by 2000, become the latest
complex boondoggle to make money for
system suppliers while diverting attention
from the real issues. (Complex maps of
property rights were being drawn up on
such systems, blessed by highly paid
international consultants. But they could
only reflect and reinforce the official view.
What was needed was new policy, on the
ground. People power would do the rest.)

One interesting aspect of the story is that
nowadays Google Maps and Google Earth
are for free. There’s even Google Code to
store open-source ‘mash-ups’, combining
new data sets with the familiar, easy to use
vector-mapping offerings. The competitive
pressure caused by the web – and the money
to be made through advertising, due to the
affluent eyeballs successful sites attract – is
freeing up software, democratising all
manner of systems. Despite the challenges,
we all have much for which to thank Tim
Berners-Lee and his brilliant, unselfish
design in 1990.

Brilliant and unselfish because simple, of
course. And if you asked Tim himself he’d
say that it was essential to bring the web to
reality in small steps, server and browser,
thus refining his ideas and making them
truly elegant. Which he was able to do partly
because he was using a system designed with
that kind of thing in mind: NextStep on the
lovely old NeXT cube.

You may not have heard of Next. Yo u
probably have heard of Microsoft, who at the
same moment were trying so hard to simplify
their development process, with help from
my mentor. But one has to admit that
M i c r o s o f t ’s end products are seldom loved for
their elegance and simplicity (certainly not
by Gilb, who has long been a Mac fanatic).
Unlike the iPod and the iPhone. They’re from
the same stable as Next, indeed the iPhone

runs a fully-fledged version of OS X, where
the brilliant object-oriented programming
ideas of Jean-Marie Hullot and team,
designed to simplify creation of graphic user
interfaces by anyone, now reside. It’s a long
s t o ry. But this beautiful system was what Ti m
was playing with at the European Particle
Physics Laboratory in 1990. Simplicity in one
area begets it in the next, at least when the
user or programmer concerned is intelligent
and creative. 

A p p l e ’s recent renown for beautiful
simplicity, not least by music fans across the
world, although surprising to the many
pundits who wrote the company off in the
90s, is hardly an accident. Here’s a classic
insight from Steve Jobs, interviewed by Byte
magazine in February 1984 on the launch of
the original Macintosh:

When you first attack a problem it seems really
simple because you don’t understand it. Then,
when you start to really understand it, you come
up with these really complicated solutions because
it’s really hairy. Most people stop there. But a few
people keep burning the midnight oil and finally
understand the underlying principles of the
problem and come up with an elegantly simple
solution for it. But very few people go the distance
to get there.

Note again, as well as Jobs’s characteristic
enthusiasm for his ‘insanely great’ people at
Apple, the place of dogged, stepwise
refinement of design. Another name for this
is humility. Or, if that sounds too weedy for
those that want to dream big dreams, let’s try
h o n e s t y. Here’s what software gurus David
Parnas and Paul Clements wrote in 1986:

The picture of the software designer deriving his
design in a rational, error-free way from a
statement of requirements is quite unrealistic. No
system has ever been developed in that way, and
probably none ever will. Even the small program
developments shown in textbooks and papers are
unreal. They have been revised and polished until
the author has shown what he wishes he had
done, not what actually did happen.

Another way to say it is that software
developers, being human, are dumb. At least
faced with the systems we’d like to build.

Keep it simple, stupid. It’s knowing that you
are that is the key.

L e t ’s finish by comparing two young
developers who are not normally called
stupid. Mark Zuckerberg is, at 23, founder
and chief executive of Facebook, and David
Heinemeier Hansson is, at 27, award-
winning creator of Ruby on Rails, a web
development framework.

One thing on which the two men differ is
programming language. And that can easily
get nasty. Facebook is written in PHP, widely
used to build websites. Rails, as its full name
suggests, uses Ruby. At the age of 49 I’ll tell
you this for free: Ruby is the better language.
But it is not, in some surface ways, quite as
simple as PHP. Instead, it allows you to
develop simpler systems. Or, more
accurately, given the same system to build,
the Ruby version should be much simpler
underneath. Fewer lines of code, easier to
understand. It matters a lot. Trust me.

This simplicity thing is, as Jobs implied, a
bit complicated. As Einstein once said,
things should be as simple as possible. But
no simpler!

More striking is how Zuckerberg and
Hansson represent an articulate regard for
simplicity among young developers who are
role models for others. Hansson goes on
about the issue the whole time, and rightly
so. And almost anyone who has dipped into
both MySpace and Facebook comes away
saying that Facebook feels simpler. Not
unrelated, it’s pretty much the hottest web
property there is right now.

Other similarities include deep reliance on
the designs of Tim Berners-Lee. If it ain’t
broke, don’t redesign it. For the technically
minded, I’m talking of REST interfaces built
from simple HTTP and URL. Hansson has
been an advocate for years. Zuckerberg
endorsed REST in his 29 May opening up of
Facebook to third-party developers – an
amazing media event about which Fortune
magazine, the Washington Post, Uncle Tom
Cobbley (on his blog, obviously) and all
wrote vast amounts of glowing copy.

One more thing about the genius of
Zuckerberg. (It’s an overused word, but the
young man is fabulously influential and I’m
feeling generous!) What was the other factor
that made Facebook the force it is today? A
culture, right from the start, that users, initially
students, should use real names, not
pseudonyms. In a word, simplicity. It helps. Ask
those Wall Street financiers and Fortune 500
chief executives who are so keen to help the
young fellow, as and when he wants to cash in
on the many billions of value that he and his
team are already deemed to have created.

Not many would dare to call Zuckerberg
or Heinemeier Hansson stupid. But where
they’ve become great, I’d argue it’s largely
because they kept it simple. As for the rest of
us … we know the real reason.

WHAT WAS THE OTHER
FACTOR THAT MADE

FACEBOOK THE FORCE
IT IS TODAY? A CULTURE,
RIGHT FROM THE START,
THAT USERS … SHOULD
USE REAL NAMES, NOT

PSEUDONYMS. IN A
WORD, SIMPLICITY


